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Learning Objectives
At the end of this activity learners should be able to:
• Define the evidence that ALS and some FTLD diseases lie on a 

disease spectrum
• Describe the histopathological findings that define ALS and 

FTLD-MND
• Describe the genetic alterations found in familial and sporadic 

forms of ALS and FTLD-MND



TOPICS

•ALS REVIEW

•COLLABORATIVE SCIENCE TO STUDY 

PATHOGENESIS/PATHOPHYSIOLOGY OF 
ALS/FTLD

•BIOBANKING IN THE 21ST CENTURY AND 

ALS/FTLD BIOBANKING INITIATIVES



AMYOTROPHIC LATERAL SCLEROSIS FACTS

•ALS is a neurodegenerative disease causing progressive 
paralysis leading to death within 2-5 years in the majority of 
patients.
•ALS is highly variable in terms of early symptoms and patterns 

of progression.
•Most cases of ALS are sporadic with perhaps 20% familial.
•Only two FDA approved medications (Riluzole and Edavarone) 

exist which may provide a minimal therapeutic benefit of 
several months extended survival.





THE MOTOR PATHWAY



Amyotrophic lateral sclerosis: a clinical review

European Journal of Neurology, Volume: 27, Issue: 10, Pages: 1918-1929, First published: 11 June 2020, DOI: (10.1111/ene.14393) 
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ANGULATED, ATROPHIED ESTERASE POSITIVE 
MYOFIBERS



“LATERAL SCLEROSIS”
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ALS PATIENT FROM TALS PM CORE



TRANSACTIVE RESPONSE DNA-BINDING PROTEIN 43
(TDP43) AGGREGATES IN NEURONS AND GLIA



GENETICS OF ALS TIMELINE
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The Lancet 2017 3902084-2098DOI: (10.1016/S0140-6736(17)31287-4) 
Copyright © 2017 Elsevier Ltd Terms and Conditions

ALS AND FTLD AS A SPECTRUM OF DISEASES

http://www.elsevier.com/termsandconditions




WHY DO THIS PHENOTYPIC/GENOTYPIC 
CHARACTERIZATION?



Ideas about the 
Pathogenesis and 
Pathophysiology 
of ALS





MNs Day 0 MNs Day 5



Figure 12 Mitochondrial dysfunction in amyotrophic lateral sclerosis. The aggregation of mutant SOD1 causes a 
failure in energy production, a breakdown of the mitochondrial membrane potential, and a loss in Ca2+ buffering 
by mitochondria. The release of cytochrome c initiates apoptotic death in the affected neuron. ADP, adenosine 
diphosphate; ROS, reactive oxygen species.

Reproduced with permission from Ref. 20.

27
From Diseases of the Nervous System. Copyright © 2015 Elsevier Inc. All rights reserved.



TNFa affects mitochondrial transport

Neuroscience 146 (2007) 1013–1019



hmSOD1 G93A transgenic rat
Howland, et al. PNAS 2002



Increased Microglia in Ventral Horn and White 
Matter Before and After Symptom Onset
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TDP-43 
• TDP-43 is a DNA/RNA binding protein with a number of 

different splice forms.
• It binds to a variety of RNA and DNA sequences, 

particularly to poly UG RNA sequences, as well as other 
proteins.

• It can shuttle back and forth from the cytoplasm. In FTD 
and ALS cases, affected neuron and glial cells show a 
variety of different TDP-43 forms that accumulate in 
inclusion bodies in the cytoplasm and/or nucleus with loss 
of normal diffuse nuclear distribution.



TDP-43 Pathology
•Formation of intranuclear and cytoplasmic inclusions

•Hyperphosphorylation

• Cleavage generates C-terminal fragments of approximately 24–26 kDa

•Dramatic translocation from nucleus to cytoplasm



Diagram of Nanobody

a) Single domain nature
b) Small size
c) Increased  hydrophilicity
d) High sequence stability
e) Extended CDR3 loop
f) Variable N terminal of CDR1 

Potentially useful for diagnostics and 
Therapeutics



Cloning and nanobody production (collaboration with 
Sierks lab at ASU) 



New collaboration with NCI, NIH 



Curt Harris, Chief Lab of Human Carcinogenesis and 
Casmir Turnquist, PhD



Investigating the role of p53 isoforms 
in brain aging, senescence, and 

neurodegeneration 

Harris Lab, Georgetown University
Harris Lab, Laboratory of Human 

Carcinogenesis, NCI/NIH



What is senescence?
• Can be also accelerated via:
stress, disease, genetic mutations, 
chromosomal abnormality (Progeria, 
Down’s syndrome), UV radiation, DNA 
or cellular damage, etc.

• May be delayed – Drugs? Caloric 
restriction? 

• Biological aging 

• Gradual deterioration of 
functional characteristics

• Loss of a cell's power of division 
and growth (cellular senescence)

• Inevitable
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∆133p53 and p53b Regulate 
Cellular Senescence

p53β
ü Upregulated at replicative senescence 
ü Cooperates with full-length p53 
ü Regulated by alternative RNA splicing

D133p53α
ü Downregulated at replicative 
senescence 
ü Inhibits full-length p53 
ü Degraded via selective autophagy

Tang et al. Oncogene 2013
Marcel et al. Cell Death Differ 2014
Fujita et al. Nat. Cell Biology 2009

Horikawa et al. Nat Commun 2014



Cellular Senescence of Astrocytes in Brain
Tissues from Neurodegenerative Disease Patients
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p53β is Upregulated and Δ133p53 is Downregulated 
in Neurodegeneration and in Aged Astrocytes in vitro
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iPSC-derived neurons
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Astrocyte and Neuron co-culture 

Primary human astrocytes
+p53β or +Δ133siRNA

Quantification of 
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Increased Neuronal Death upon Co-culture with 
Δ133p53-knocked-down or p53β-overexpressing 
Astrocytes
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Control Δ133p53
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Model of p53 Isoform Regulation of Astrocyte-mediated 
Neuroprotection and Neurodegeneration





MY INSPIRATION TO BECOME A BRAIN BANKER…



YOUNG FRANKENSTEIN (1974)
YES, IT’S ON NETFLIX



21st Century Brain 
banking





STORAGE OF TISSUES IN FIXATIVE AND BLOCKS



STORAGE OF TISSUES



FROZEN TISSUES AND MORE RECENTLY FFPE TISSUES

• Genomics

• Proteomics

• Transcriptomics

• Metabolomics

• Any ”omics” you can think of



COMBINING OMICS WITH SPATIAL/HISTOPATHOLOGY: 



Target ALS 
Resources

- Biofluids, Tissues, Sequencing

Robert Bowser, PhD
Brent Harris, MD, PhD
Hemali Phatnani, PhD



• Create Repositories of samples (longitudinal biofluids, post-mortem tissues) 
linked to sequencing information (WGS, RNA-seq), clinical information and at-
home measures that capture the disease from diagnosis to end-stage.

• Includes ALS, healthy controls, and disease controls

• All coded samples, data and clinical information immediately available to the 
research community

Overall Goals



• Collect, process, bank, analyze, and distribute postmortem CNS tissues and 
skeletal muscle from ALS and neurological disease-free controls

• Sites and PIs: 
• Barrow Neurological Institute – Robert Bowser, PhD
• Columbia University – Neil Shneider, MD, PhD and Matt Harms, MD
• UCSD – John Ravits, MD
• Georgetown University – Brent Harris, MD, PhD
• Washington University – Cindy Ly, MD, PhD and and Timothy Miller, 

M.D., Ph.D. 

Core co-Directors: Drs. Bowser and Harris
Core Neuropath Director: Dr. Harris

Goal and Sites



TALS PM CORE
Approximately 250 ALS Cases and 30 Control Cases

Now starting premortem longitudinal Biofluid collections 
to bank and match with clinical progression.



Genomics Data Overview







Summary

• ALS and FTLD sit on a spectrum of neurodegenerative 
diseases characterized by variable clinical, genetic, and 
cellular/molecular changes.

• Familial and sporadic forms exist and we can learn a lot from 
studying the genetic changes.

• Collaboration and biofluid/tissue banking are the only way 
we are going to make headway on this devastating group of 
diseases.
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THANKS FOR YOUR ATTENTION! 

QUESTIONS??
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