Pediatric Neuropathology: Malformations

Angela Viaene, MD PhD

Assistant Professor, Pathology and Laboratory Medicine Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine

AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS

I have no relevant financial relationships to disclose

Learning Objectives

- Describe the basic steps of cortical development and how disruptions in each step may result in different types of cortical malformations.
- Compare and contrast the gross findings, microscopic features and etiologies of lissencephaly type I (classic) and lissencephaly type II (cobblestone).
- List the most common genetic and non-genetic etiologies associated with holoprosencephaly.
- Cite an example of how mutations in one gene may result in different phenotypes/malformations.

Outline

- Disorders of forebrain induction
 - Alobar holoprosencephaly
 - Semilobar holoprosencephaly
 - Lobar holoprosencephaly
 - Agenesis of the corpus callosum
- Malformations of cortical development
 - Lissencephaly
 - Heterotopias
 - Cortical dysplasia with cytomegaly
 - Focal cortical dysplasia
 - Tuberous Sclerosis
- Virtual Slides

Malformations

- Genetic and environmental factors have been implicated in the etiology of CNS malformations
- Most birth defects are likely multifactorial (combination of genetic, epigenetic and environmental)

Disorders of Forebrain Induction

- Alobar holoprosencephaly
- Semilobar holoprosencephaly
- Lobar holoprosencephaly
- Agenesis of the corpus callosum

Holoprosencephaly

- Developmental defect of the forebrain (prosencephalon)
- Incomplete separation of the cerebral hemispheres into distinct right and left halves
- Mostly sporadic (occasional familial cases)
- Prevalence:
 - 1:16,000 live births
 - 1:250 conceptuses
- Three types:
 - Alobar (complete): no separation of the telencephalon, single ventricle in a small brain
 - Semilobar (incomplete): variable degrees of separation of the posterior cerebrum
 - Lobar: a small focal fusion of the midline with T-shaped or Y-shaped lateral and third ventricles

Alobar Holoprosencephaly

Images courtesy of Brian Harding, DPhil FRCPath; Figure 2.7-1, Pediatric Neuropathology: A Text-Atlas

Alobar Holoprosencephaly

Figures 2.7-3 and 2.7-5, Pediatric Neuropathology: A Text-Atlas

Semilobar Holoprosencephaly

Figure 2.8-3, Pediatric Neuropathology: A Text-Atlas; Images courtesy of Brian Harding, DPhil FRCPath

Lobar Holoprosencephaly

Images courtesy of Brian Harding, DPhil FRCPath; Figure 2.8-5, Pediatric Neuropathology: A Text-Atlas

Holoprosencephaly Clinical Features

- Cleft lip/palate
- Eye anomalies (cyclopia)
- Anosmia
- Congenital nasal pyriform aperture stenosis
- Single central maxillary incisor
- Pituitary dysfunction (including SIADH)
- Seizures
- Hypotonia

Holoprosencephaly Etiology

- Material diabetes mellitus
- Infections: toxoplasmosis, syphilis, rubella
- Teratogens: ethanol, retinoic acid, cholesterol synthesis inhibitors
- Genetic factors:
 - Cytogenetic abnormalities seen in 50% of cases
 - Trisomy 13 most frequent
 - Smith-Lemli-Opitz syndrome (DHCR7)
 - Mutations (see next slide)

Holoprosencephaly genes

Disease or locus name	CNS malformations involved	Gene	Function of gene product	Chromosome location	OMIM number [*]	Mouse model or homologue
Holoprosencephaly (HPE1)	Alobar holoprosencephaly	ND	ND	21q22.3	236100	ND
Holoprosencephaly (HPE2)	Alobar or semi-lobar holoprosencephaly	SIX3 ¹⁰⁶⁴	Homologue of sine oculis gene of <i>Dro-</i> <i>sophila:</i> homeobox- containing transcrip- tion factor	2p21	157170	Targeted muta- tion of <i>Six3</i> gene has truncation of forebrain ⁵⁷⁹
Holoprosencephaly (HPE3)	Holoprosencephaly	SHH (Sonic hedgehog) ⁸⁷⁵	Secreted signalling molecule; neural inducer	7q36	142945	Targeted mutation of <i>Shh</i> gene has holoprosencephaly in addition to many other defects ¹⁵¹
Holoprosencephaly (HPE4)	Holoprosencephaly	<i>TGIF</i> ⁴⁰⁵	Homeodomain protein functioning as repressor of TGF- β	18p11.3	142946	Targeted mutation of <i>Tgif</i> gene pro- duces no visible phenotype ⁵²⁴
Holoprosencephaly (HPE5; 13q32 de- letion syndrome)	Holoprosencephaly, exencephaly	ZIC2 ¹²⁴	Transcription factor encoded by homo- logue of odd paired gene of <i>Drosophila</i>	13q32	609637	Targeted mutation of <i>Zic2</i> gene has holoprosencehaly ⁷³⁴
Holoprosencephaly (HPE6)	Holoprosencephaly	ND	ND	2q37.1	605934	ND
Holoprosencephaly (HPE7)	Holoprosencephaly	PTCH1 ⁷⁰³	Patched: membrane receptor for Sonic hedgehog protein	9q22.3	601309	Targeted mutation of <i>Ptch1</i> causes medulloblastoma in heterozygotes and neural tube defects in homozygotes ³⁹⁰
Holoprosencephaly (HPE8)	Holoprosencephaly	ND	ND	14q13	609408	ND
						ND = not determined

From Table 4.1: Greenfield's Neuropathology, 9th Edition

Agenesis of the Corpus Callosum

- Complete (total) and incomplete (partial) types
 - Partial is usually only missing the splenium
- Isolated (silent clinically or subtle) or seen in association with other malformations (ex. holoprosencephaly)
- May be sporadic but typically associated with syndromes: Aicardi, Andermann, Meckel
- Possible pathogenetic mechanisms:
 - Probst bundle of misdirected fibers
 - Mechanical defect suggested by hamartoma/lipoma

Agenesis of the Corpus Callosum

Images courtesy of Brian Harding, DPhil FRCPath

Outline

- Disorders of forebrain induction
 - Alobar holoprosencephaly
 - Semilobar holoprosencephaly
 - Lobar holoprosencephaly
 - Agenesis of the corpus callosum
- Malformations of cortical development
 - Lissencephaly
 - Heterotopias
 - Cortical dysplasia with cytomegaly
 - Focal cortical dysplasia
 - Tuberous Sclerosis

Development of the Cerebral Cortex

Figure 3.50: Neuropathology: A reference text of CNS pathology, 3rd edition

Malformations of cortical development with associated genes and clinical features				
Developmental stage	Cortical malformation	Genetic cause	Clinical features	
Abnormal neurogenesis				
	Microcephaly	ASPM	Mental retardation, not generally associated with epilepsy,	
		Microcephalin	autosomal recessive inheritance	
		CDK5RAP2		
		CENPJ		
	Hemimegalencephaly	Unknown	Mental retardation, early onset seizures (frequently intractable epilepsy), +/- neurocutaneous syndrome	
	Focal cortical dysplasia	Unknown	Most common, focal and generalized Seizures	
Abnormal neuronal mig	ration			
	Periventricular heterotopia	FLNA	Normal intelligence, adolescent onset seizures, X-linked disorder with male lethality	
		ARFGEF2	Mental retardation, microcephaly, autosomal recessive inheritance, rare	
	Subcortical band heterotopia	DCX	Subcortical band heterotopia in females, mental retardation, epilepsy, X-linked disorder	
	Lissencephaly	LIS1	Miller-Dieker syndrome (characteristic facial features), autosomal dominant inheritance	
		DCX	Lissencephaly in males, X-linked	
		TUBA1A	Lissencephaly, clinical features similar those caused by <i>LIS1</i> and <i>DCX</i> , de novo mutations	
		ARX	Associated with ambiguous genitalia, hypothalamic dysfunction, neonatal epilepsy, X-linked disorder	
		RELN	Associated with cerebellar hypoplasia, epilepsy, autosomal recessive inheritance	
Abnormal arrest in neuronal migration				
	Cobblestone lissencephaly		Fukuyama congenital muscular dystrophy	
		POMGnT1	Muscle-eye-brain disease	
		POMT1	Walker-Warburg Syndrome	

Adapted from Pang T, Atefy R, Sheen V. Malformations of cortical development. *Neurologist*. 2008;14(3):181–191.

Lissencephaly type I (Classic)

• Neuronal migration disorder characterized by abnormal gyri

• Varies from agyria to pachygyria

• Severe mental retardation, hypotonia, intractable seizures

• Several genetic types are recognized

Lissencephaly type I

Image courtesy of Brian Harding, DPhil FRCPath; Figures 2.11-1 and 2.11-2, Pediatric Neuropathology: A Text-Atlas

Disease	CNS	Gene	Function of product	Chromosome	Mouse model
Lissencephaly (type I): autosomal recessive (Norman- Roberts type)	Lissencephaly with low sloping forehead and prominent nasal bridge	RELN	Reelin: extracellular matrix protein produced by Cajal- Retzius cells required for neuronal migration	7q22	<i>reeler</i> mutant mouse causes cerebellar and cerebral cortical lamination anomalies
Lissencephaly (type I): Miller-Dieker syndrome, autosomal dominant (haploinsufficiency)	cerebral heterotopias,	<i>LIS1</i> and <i>14-3-3[€] YWHAE ;</i> (contiguous gene deletion)	LIS1: Non-catalytic subunit of brain platelet-activating factor acetyl hydrolase (PAFAH)	17p13.3	Targeted loss of function alleles of <i>Pafah1b1</i> gene and 14-3-3 [¢]
Lissencephaly (type I): isolated lissencephaly sequence (ILS), autosomal dominant	Lissencephaly	LIS1 deletion alone	LIS1: as above	17p13.3	Targeted loss of function alleles of <i>Pafah1b1</i> gene causes neuronal migration disorders
Lissencephaly (type I): X-linked	Lissencephaly with agenesis of corpus callosum in males; subcortical band heterotopia in females	DCX	Doublecortin: microtubule- associated protein that interacts with non- receptor tyrosine kinases, including Abl	Xq22.3-q23	suppression of doublecortin expression by RNAi inhibits neuronal migration in rat neocortex
Lissencephaly (type I): X-linked (XLAG)	Lissencephaly with ambiguous genitalia	ARX	Aristaless-related homeodomain transcription factor	Xp22.13	Targeted mutation of <i>Arx</i>

Adapted from Forman MS et al. J Neuropathol Exp Neurol 2005

Lissencephaly type I: Isolated Lissencephaly

- Isolated lissencephaly sequence occurs in patients with deletions of the LIS1 gene
- Autosomal dominant
- LIS1 encodes the non-catalytic subunit of platelet activating factor acetyl hydrolase
 - Involved in the regulatory pathway for dynein
 - Important for neuronal migration
- More severe occipital/posterior parietal

Lissencephaly type I: Miller-Dieker syndrome

- Clinical features:
 - Microcephaly, bitemporal narrowing, vertical ridging in forehead, micrognathia
 - Cryptorchidism, heart and kidney anomalies may be seen
- Due to codeletion of *LIS1* and *14-3-3* genes (both on the short arm of chromosome 17)
- Lissencephaly due to deletion of *LIS1*
- Facial features due to other genes on 17p

Miller-Dieker syndrome

Images courtesy of Brian Harding, DPhil FRCPath

Lissencephaly type I: doublecortin (DCX) gene mutation

- Located on Xq22
- X-linked dominant
- In males, isolated lissencephaly
- More severe anteriorly

Lissencephaly type I: XLAG

- X-linked lissencephaly with ambiguous genitalia (XLAG)
 - Due to ARX mutations
 - X-linked recessive
 - Agenesis of the corpus callosum, severe seizures, temperature dysregulation, microcephaly
 - Posterior-anterior gradient
 - 3-layer cortex

XLAG

Images courtesy of Brian Harding, DPhil FRCPath

Lissencephaly Type II (Cobblestone)

- Autosomal recessive
- Cortex unlayered disorganized with cobblestone surface and thickened meninges
- Variable muscular and ocular involvement with CNS disorders

Lissencephaly Type II (Cobblestone)

neuropathology-web.org

Disease	CNS	Gene	Function of product	Chromosome	Mouse model
Lissencephaly (type II): Fukuyama congenital muscular dystrophy	Cobblestone lissencephaly, polymicrogyria	FCMD	Fukutin: gene interrupted by retro- transposon insertion. A secreted protein, which may function as a glycosyl transferase in the Golgi	9q31	Targeted mutation of FCMD gene causes muscular dystrophy and cortical dysplasia
Lissencephaly (type II): muscle-eye-brain disease, type A, 5; type B, 5; type C, 5	Cobblestone lissencephaly, congenital myopia, glaucoma, retinal hypoplasia, mental retardation, hydrocephalus	FKRP	Protein targeted to the medial Golgi apparatus and necessary for posttranslational modification of dystroglycan	19q13.3	
Lissencephaly (type II): Walker-Warburg syndrome	Agyria, cobblestone lissencephaly, cerebellar dysplasia and vermal agenesis, hydrocephaly, occipital encephalocele	POMT1 POMT2	O-mannosyl transferase 1: first enzyme in synthetic pathway of O- mannosyl glycans	9q31-q33 14q24.3	Large(myd) mutant and targeted mutation of α dystroglycan gene provide models of Walker-Warburg syndrome
Lissencephaly (type II): muscle-eye-brain disease	Cobblestone lissencephaly, congenital myopia, glaucoma, retinal hypoplasia, mental retardation, hydrocephalus	POMGnT1	O-mannose β-1,2-N- acetyl glucosaminyl transferase: second enzyme in synthetic pathway of O- mannosyl glycans	1p34-p33	Targeted mutation of POMGnT1 gene causes phenotype resembling muscle-eye-brain disease
Lissencephaly (type II): muscle-eye-brain disease	Cobblestone lissencephaly, congenital myopia, glaucoma, retinal hypoplasia, mental retardation, hydrocephalus	LARGE	Interacts directly with dystroglycan to allow glycosylation	22q12	

Lissencephaly Type II

- Walker–Warburg syndrome
 - AKA HARD+E syndrome (hydrocephalus, agyria, retinal dysplasia, encephalocele) and cerebro-ocular dysplasia—muscular dystrophy syndrome
 - Cobblestone lissencephaly, cerebellar dysplasia and vermal agenesis, hydrocephaly, occipital encephalocele, congenital muscular dystrophy
 - Variety of ocular anomalies
 - Die in infancy
 - Associated with mutations in *POMT1* and *POMT2* genes
- Muscle-Eye-Brain disease
 - Generalized muscle weakness, contractures, seizures, eye anomalies, cobblestone lissencephaly
 - Associated with mutations in POMGnT1, LARGE, and FKRP

Lissencephaly Type II:Walker–Warburg syndrome

Images courtesy of Brian Harding, DPhil FRCPath

LISSENCEPHALY TYPE II: WALKER-WARBURG SYNDROME

Images courtesy of Brian Harding, DPhil FRCPath

Gray Matter Heterotopia

- Clusters of neurons and glia that form a region of gray matter in an abnormal location
- May be single or multiple, line ventricles, in deep white matter, subcortical white matter, leptomeninges
- Overlying cortex can be normal or disrupted
- May have normal intelligence and normal neurologic exam

Nodular Heterotopia

neuropathology-web.org

NODULAR HETEROTOPIA

neuropathology-web.org; image courtesy of Brian Harding, DPhil FRCPath

Nodular Heterotopias: Etiology

- Reported following fetal insults:
 - Sustained maternal hyperthermia
 - Methylmercury poisoning
 - Radiation
- Familial subependymal heterotopia usually found in females:
 - Consistent with X-linked dominant inheritance (lethal in males)
 - Strong correlation with epilepsy
 - Mutations in *Filamin 1 (FLNA)* on Xq28 → actin binding protein associated with cytoskeleton and is important for cell migration
- Periventricular nodular heterotopia with microcephaly
 - Mutation in ARFGEF2
 - Autosomal recessive

Band (Laminar) Heterotopia

- Bilateral bands of heterotopic gray matter in the white matter located between the lateral ventricular walls and the cortex
 - Overlying cortex may be normal or have simplified gyral pattern
 - Mild to moderate mental retardation
 - Seizures, often with later onset

Band Heterotopia

Images courtesy of Brian Harding, DPhil FRCPath

Band Heterotopia

- Rare, non-lethal
 - May cause epilepsy

• Predominantly in females

• DCX mutations detected in many patients

Cortical Dysplasia with Cytomegaly

- Focal cortical dysplasia
- Tuberous Sclerosis

Focal Cortical Dysplasia

	Three-tiered ILAE classification system of focal cortical dysplasia (FCD)
Туре І	Isolated FCD
la	Abnormal radial cortical lamination
lb	Abnormal horizontal cortical lamination
lc	Abnormal radial and horizontal cortical lamination
Type II	Isolated FCD
lla	Dysmorphic neurons
llb	Dysmorphic neurons and balloon cells
Type III	Cortical lamination abnormalities associated with principal lesion
Illa	FCD in the temporal lobe + hippocampal sclerosis
IIIb	FCD adjacent to a glial or glioneuronal tumor
IIIc	FCD adjacent to a vascular malformation
IIId	FCD adjacent to an acquired lesion (ex. trauma, ischemic injury)

Focal Cortical Dysplasia

Focal Cortical Dysplasia, Type IIa

Focal Cortical Dysplasia, Type IIb

Tuberous Sclerosis

Images courtesy of Brian Harding, DPhil FRCPath

Tuberous Sclerosis

Images courtesy of Brian Harding, DPhil FRCPath; Figure 7.1-5, Pediatric Neuropathology: A Text-Atlas

Tuberous Sclerosis: etiology

- Locus heterogeneity with diseasedetermining genes:
 - TSC1 on chromosome 9 (protein = hamartin)
 - TSC2 on chromosome 16 (protein = tuberin)
- *TSC1* and *2* gene products are strategically important in cell growth and turnover
 - Thought to be tumor suppressors
 - Mutations lead to hyperactivation of the mTOR signaling pathway

Virtual Slides

https://pathpresenter.net/#/public/display?token=bbc29011

Summary

- Disorders of forebrain induction
 - Alobar holoprosencephaly
 - Semilobar holoprosencephaly
 - Lobar holoprosencephaly
 - Agenesis of the corpus callosum
- Malformations of cortical development
 - Lissencephaly
 - Heterotopias
 - Cortical dysplasia with cytomegaly
 - Focal cortical dysplasia
 - Tuberous Sclerosis

References

- 1. Adle-Biassette H, Harding BN, and Golden J. Developmental Neuropathology, Second Edition. John Wiley & Sons, Ltd. 2018. p55-132.
- Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L, Vezzani A, Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011 Jan;52(1):158-74.
- 3. Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul;13(7):710-26.
- 4. Norman, M G, McGillivray, B, Kalousek, D K, Hill, A, and Poskitt, K. Congenital malformations of the brain: Pathological, embryological, clinical, radiological, and genetic aspects. New York, Oxford University Press. 1995. p187-221.
- Pang T, Atefy R, Sheen V. Malformations of cortical development. Neurologist. 2008 May;14(3):181-91.

